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ABSTRACT

In this paper, we consider a new kind of free boundary problem related to

the investigation of the structure of discontinuous solutions of degenerate

quasilinear parabolic equations. A thorough treatment is given for the

following special cases:

au Cal2 um
t= a 2  (m > 1)at 2

S =0,ux=X(t)

au a'(t)

(a < 0, P > 0 - const.)

ult=0 = a

which can be reduced to a problem in ordinary differential equations with a

certain singularity.
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SIGNIFICANCE AND EXPLANATION

This paper is concerned with a free boundary problem which arises in the

study of a class of degenerate parabolic equations. A thorough treatment is

given for a special case which can be reduced to a problem in ordinary

differential equations upon introduction of the appropriate similarity

variable. Beyond its inherent interest, the solvability of the resulting

problem establishes that an analysis by Vol'pert and Hudjaev of jump

conditions satisfied by solutions of degenerate parabolic equations is not

correct in general. SI
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A FREE BOUNDARY PROBLEM FOR DEGENERATE QUASILINEAR PARABOLIC EQUATIONS

Zhuoqun Wu

11. Introduction

In this paper, we are concerned with a free boundary problem for quasilinear

equations of the form

(u a 2 A(u)
at ax 2

with

A'(u) - a(u) ) 0

Our problem arises, in particular, from the investigation of the structure of

discontinuous solutions of equation (1.1). It is shown in (1] that discontinuity occurs

in a generalized solution only if there exists an interval (ul,U 2 ) such that

a(u) = 0 for u e (ulu 2 )

Things are simple if the initial data

(1.2) uIt=0 = u0 (x)

happen to either fall in an interval where a(u) > 0 or fall in an interval where

a(u) - 0. What we need to investigate is the case that a(uo(x)) > 0 for some x and

a(uo(x)) = 0 for some other x. The following situation seems to be typical:

a(u) - 0 for u < 0 and a(u) > 0 for u > 0
(1.3)

u0 (x) < 0 for x < 0 and u0 (x) > 0 for x > 0

In Lais case, one could conjecture that the corresponding generalized solution u would

have a line of discontinuity x = X(t) with X'(t) < 0 starting from (0,0). The

question is: how does the discontinuity emerge and develop? To get an answer, we need to

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



make essential use of the jump conditions which the generalized solutions satisfy. In

[1), two jump conditions are presented, which are

(1.4) a(u) - 0 for u e I(u-,u
+)

and

(1.5) [sgn(u + 
- k) - sgn(u- - k)](a - k)vt 4 0 for k e R

- +.
u + u +for (1.1), where u - , u and u denote the approximate limits at the points of

jump, (Vt1 x ) the normal to the set of points of jump and I(u-,u + ) the interval with

+
endpoints u- and u . In particular, (1.5) implies

(1.6) (u -U)V 0 or Vt  0

which means that all of the normals to the set of points of jump are parallel to the x-

axis. Hence the line of discontinuity starting from (0,0), if any, should be a straight

line perpendicular to the x-axis. However, this assertion is not true in general; things

are not really so simple. The wrong assertion comes from the incorrect jump condition

(1.5). The correct form of this condition should be

(1.7) [sgn(u 
+

- k) - gn(u- - k)][(; - k)v - aA(U) v 
] 
4 0 for k e R

t ax

and

(u
+ - u-v t - [(L( u)

+ _ 1A0u))-.

or

(u + AX + u) + A(u)l+ _ (LAu)) 1  0
dt axax

dx
where ! denotes the slope of the tangent to the set of points of jump.

Suppose (1.3) holds and x = At), where P(t) < 0, is the line of discontinuity

of the corresponding generalized solution u(t,x). Then, since u0 (x) < 0 (x < 0) and

a(u) - 0 (u < 0), we first have

u(t,x) = u0 (x) for x < X(t)

Secondly, from (1.4) it follows that

u x X(t) 0

-2-



and hence, noticing that 0, from (1.8) we get

-U oL())(t) + (3U +x 0
0 a. I X (t)

Thus (u(t,x),X(t)) is a solution of the free boundary problem for (1.1) with boundary

conditions

(1.9) uIxX(t) 0 0

(1.10) u0=tt)))'(t)

and the initial condition

(1.11) ult=O , uo(X) for x > 0

We will prove the inverse in 12, namely, if (u(t,x),A(t)) is a solution of the free

boundary (1.1), (1.9). (1.10), (1.11), then we can immediately obtain a generalized

solution of the initial value problem (1.1), (1.2) with x = X(t) as the line of

discontinuity.

The rest of this paper (43-45) is devoted to a detailed study of the special case:

A(u) = 0 for u < 0 and A(U) - um for u > 0
(1.12)

u0 (x) a < 0 for x < 0 and u0 (x) = B > 0 for x > 0

where m > 1 and 0,0 are constants. The possibility, in this case, of reducing to a

problem in ordinary differential equations simplifies matters. The main results are

included in the theorem in 15.

By the way, since the proof of the uniqueness theorem in (1] is based on jump

conditions (for (1.1), they are (1.4), (1.5)) and one of them is not true in general, a

revision of the proof is required. We will derive the correct form of the jump condition

and complete the proof of uniqueness in another paper (21.

The author would like to thank Professor Michael Crandall for several interesting and

helpful discussions during the preparation of this paper.
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12. Generalized Solutions of (1.1), (1.2)

Suppose A(u) e c C(R), U0(xw e L(R)r cl C (R\{01).

Proposition 1. If (u(t,x),)X(t)) is a solution of the free boundary problem (1.1),

(19,(1.10), (1.11), then the function

(u(t,x) for x > X(t)
w(t,x) -

I u (x) for x < A~t)

is a generalized solution of the initial value problem (1.1). (1.2) with x = X(t) as the

line of discontinuity.

By a solution of the free boundary problem (1.1), (1.9), (1.10), (1.11), we mean a

pair of functions (u(t,x),)X(t)), such that

(2.1) u e L -(G) nl c(6\{(0,0)1) n l C1 2 (G), G {(t,x); 0 <t <T, x > t)

(2.2) If I2-Idtdx, If 11-Idtdx < +- for any bounded domain D with 5 C 6 I - 0}

D ata

(2.3) aA(u) e -(~oo)
axecG\GO )

(2.4) x(t) 8 C[0,T] nfl C(0,T]

(2.5) AO(t) <0

and (1.1), (1.9), (1.10), (1.11) are satisfied. Here C1 ,2 (G) denotes the class of

functions which are continuous on G with their first order derivative with respect to

t and their first and second order derivatives with respect to x.

Proof. We need to check all of the conditions in the definition of generalized

solutions given in (1).

Since u 8 L"(G.), UO e L (R), we have w e L7(Q), where Q~ = (0,T) x P. The

assumption u. e C I RVf0) and (2.2) imply that w 8 BV(Q). By BV(Q), we mean the

class of integrable functions on Q of locally bounded variation. 1

7bprv '~w L 2 ,c(Q) where R(U) I Y(,r)dr and Y(T) a(T) 2 we multiply

(1.1) by *u with * > 0 and o e C 0(Q) and get

Ia 2 (a)2 1 1u O A ) uaA )
- - + a(u)L- uL-$---- - u

2 at 2F iat ax ax ax ax

-4-



Integrating this relation over G. {(t,x) e G; x > )X(t) + c, e > 01 (notice that u

need not be differentiable up to L :x - t)) yields

IT u2I d. - c 0- 2 dx - -1W42 dx +o Wu a 3u 2 dtdx
2 X()C t-T X2 x-).(t)+4E t0 Gf iix

(2.6)e

I I A U
2 
dtdx - I *u 3A~i!) dt -a u Wu)~-~ dtdx

2 G Cat 0 ax 'x=)It)+e G x ax

Since *!t0, ' 0, the first and third term of (2.6) are zero. By virtue of (1.9),

(1.10), the second and sixth term tend to zero as E + 0. The fifth and seventh term are

bounded uniformly in c. Thus, letting c + 0, from (2.6) we get

(2.7) If *a u) 2)dtdx < -t
G a

Denote

Yu for x > AW

0 for X < X~t)

Then by (2.7), g e L 2cP)

Clearly, for any e eo

3'() dtdx: - If *gdtdx +* If *gdtdx asE + 0
Jx-X(t)I>E ax jx-X(t)j)C Q

Integrating by parts gives

* RcV) -td R(w)dtdx

{XLA(t)j.C idd xf-X(t)k<C ax

+ J R(w)dt - OR(w)dt + 0 as C + 0

So

-5-



aR(w) (wIf . arx dtdx- + '8 w) dtdx + If *gdtdx.

x x-N(t) [)c Q

3R(w) 2This means that y-x g e Loc(Q).

Now we prove that w satisfies the integral inequality

(2.8) J(w,k,*) - I sgn(w - k)[(w - k) it - aA(w) !]dtdx ) 0 for k e R,
Q

* e co (Q), 0 0

Divide J(w,k,O) into two parts:

J(w,k,*) - If agn(u 0-k)(u 0-k) 1 dtdx + If sgn(u-k)[(u-k) - 3A(u) L]dtdx

x<X(t) 
x>A(t)

(2.9)

- 1 (uo,k,$) + J2 (u,k,O)

Obviously

)(T) T 0 ),- (x)

J (uo.lk,*) I XT - kjdx I T4 dt + f 0 u - kjdx I I dt
- 0 X(T) 0

(2.10) 0 T
I u0 - kl$(X-1(x),x)dx - - u0 - kIlx.X(t)X'(t)dt

X(T) 0

(2.11) J2 (u,k,*) - lim J2 ,n(u,k,f)
rl+0+

where

J (uk,) - ff sgn(u.- k)f(u - k) 2±- A(u) a1dtdx
x)X(t) nat ax a,

1 for T > n

sgn (T) = for ITI < n

-1 for T < -TI

We have

sqn (u - k)[(u - k) a A(U) "

au sga u - )au

a (sqn (u u- k)¢) - Sgn (u - k) sgn(u -k) a(u-k)6
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--(eqn, (u - k) *( ) + ogn (u - k) - 1;.-k)~)L-

ax rl ax nax 2a

Since u satisfies (1.1) whenever x > )X(t), we have

J (u~k.*) '# .JJ [2 (.gn (u - k)(u - Ic)O) - (sgn (u - k) ( ) 0) dtdx
2,n X>t at n x ) a

- ff sgjnl(u - kc) Cu u - k)odtdx
X>X(t) n a

T T8A(!L
. f sgn n u - k)(u - k)O* -Xt A'(t)dt + j sgnr (u - kc) ax xku)d

- ff sgn*(u - kc) 2u(u - Ic)odtdx
X>X(t) 71 at

T T
. f an ( k) kO, )OI(t)dt - f aqn (k)u A) t)dt

0 n~ X-X~ t) 0 r 0X-X(t)

- ff sgn'Cu - kc) l (u - k)Odtdx
X>)Xt) n a

For any fixed c > 0, since u e C (G ), we have

ff og;(. ) Cu u - k)*dtdx + 0 as n~ + 0

By (2.2),

I(t)<xdrt)+e Ic) C- u - I)OdtdxI 4 frf O*[-jdtdx + 0 as C 0

Thus

ff sgn;) u Ik) C u - Ic)odtdx + 0 as n1 + 0

and hence

T T
(2.12) lim .7 2,Cu,Ic,f) ;I f IJcI~I c..t) XOt)dt f sgan~k)uoIx-xt)A'(t)dt

n ,T+ 0 0

-7-



Combining (2.9)-(2.12) gives

T
J(w,k,o) 2, f (-1.0 - ki + Iki - sgn(k) u 0 0 -~)A(t)dt o

since XI(t) < 0. This proves (2.8) and the proof of Proposition is complete.



j3. Estimates on the Similarity Solution

From now on we consider the special case (1.12). In this case, the free boundary

problem becomes

2 m
(3.1) au a "

at a

(3.2) U x,,.(t) - 0

(3.3) am ,

ax -(t)

(3.4) u~t.0 = B

We seek solutions of the form

(3.5) u - u(E), x •

1/2

Then we arrive at a free boundary problem for an ordinary differential equation, namely:

2

ul 0

m
(u )I

Let

(3.6) v um •

The problem for v(E) is

1
(3.7) v. m  v.

2m v

(3.8) VI0 ,
0

-9-



(3.9) v. F
Eo 2 0

(3.10) vi 1 ..

We seek solutions v e C1 0%O , ) n C2 (&0,M), which are positive for F > 0* We will

first solve (3.7), (3.8), (3.9) for any fixed t0 
< 

0 and then choose 0 such that the

solution satisfies (3.10) as well.

Integrating (3.7) and using (3.8), (3.9) we get

1-1

(3.11) v'() = exp(- f Tv (T)d)

1 1
u ° f e x p ( - I - -

(3.12) v() - j I av m (s)ds)dT

If we write (3.7) as

1 ' 1 ' 1

v 1 2 2

integrate and use (3.8), (3.9), then we get

2. 1

(3.13) 0 1 vm ) + I f v m(r)dt,2v'(&) 2 2 ( 0
& 0

1110 1 f 1 2TvmlTldT(3.14) v( ) = 2 ( E - ) + 2 0

In order to solve (3.7), (3.8), (3.9), it suffices to solve the integral equation

(3.12) or (3.14) - to find a solution v e C[&0,-) which is positive for E > E0" we

remark that the integrand in (3.14) is not singular at v = 0 in contrast to (3.12).

Before we discuss the solvability of (3.7), (3.8), (3.9), we first derive some

estimates on the solutions.

From (3.11) we see that v' is strictly increasing for E 0 4 C 0. In particular,

for E0 4 C ( 0 and hence

-10-
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0

(3.15) v(&) ( - O) for E 0

Usinq (3.11). (3.15) we further obtain

1
--n --

oFo0 exp[- L f ( 0 r - Cr dT)

-1 1
---- I,C .epo 1 IR0o  j (T - o  ])

2mto 2

10

'- exp[-( ) IFI] for E 
< 

t 0

or

(3.16) v'() C for 0

where

-- 1 2

(3.17) R •exp[(i 1& 1m)

Hence

(3.18) v(l) 4 - 1( - E for tO 0 t < 0

Combining (3.18) with (3.15) qives

2 0 2 0 0

Next we prove that

(3.20) v(E) < am o

whenever v(E) exists. Here M in a constant such that

ItI  1 rI-I -1I. Mn-I

(3.21) 2 + (R 2 02 1 2m i I -1m exp dn2)dn)M C 2

0

Let be the maximal existence interval of v(U. rf t 0, then (3.18)

implies (3.20). Suppose E > 0 and there exists. 2 > 0, E2 
< 
t such that

-11-



(3.22) v(&) < aM 0 for 0 4 E < 2 and v(&2) = cMK 0

Then, we divide the right hand side of (3.12) into two parts:

OE 0  0 1 T 1 -1C T

e -& sv (s)ds)dr + L2 j exp- J svm  (s)ds)dT
2 00 20E0

- I + 1 2

and estimate each of them. Using (3.15) we qet

Cio 0 T ! -1 RI&oI
- I exp(- I f ov s) ( 4 ci 02 0 ro E 0 0 -0

Using (3.15) and the first part of (3.22) we get for 0 4 < & 2 '

ME 0C T 2-1
12 - j exp(- f sv' (s)ds)dr

0 
o

0 -1 f I -1
exp f v" (s)ds)exp(- f -v' (s)ds)d-2- 2o m 0

2-1 2 1

~ ep[~ ~"- --- 1
2 0exp[l . ] f exp(- f v (s)ds)d

-2 22 Y )0 0

-tEO R Jf exp(- 
T 1 

d1

2 R f 1 s(aMEOlm ds)T
0 0

- 0 R f& exp(- 1 ) m-T2 dT2 0 4m 0C 2

I n- r-Irn IT f exp(-s 2 Ms ( I- ]M 2)

a 0C (H a
2  i t 12m j exp( 

2 ds 
2  )

0

Hence, by the choice of M (see (3.21))

-12-



which contradicts the second part of (3.22).

Furthermore, using (3.11), (3.15) and (3.20) we gt

(3.23) v() R expf - (aME) F 21 for 0 4 <C

-13-



14. Vxistence for (3.7), (3.8), (3.9)

Now we prove

Proposition 2. The problem (3.7), (3.8), (3.9) has a solution

v e C1 ! 0,W) n c2 (eLa,) and v(FE) > 0 for E > t.Solutions of (3.7), (3.8), (3.9) are

unique and depend continuously on t0< 0 and a < 0.

Proof. First we prove the existence. By virtue of (3.20), (3.16) and (3.23), it

suffices to prove that (3.7), (3.8), (3.9) has a solution on E 0~ C 0 which is

positive except at C - C 0.

Denote by M the class of functions v e c[E. 0 such that

0 < v(&) 4 N for E >E0

where N is a constant satisfying

I

S(jiI + 3Nm )1C0 12 4 N

Clearly, M4 is a closed convex subset of C[C0 ,0).

Consider the operator

0 2T)v (T~dT
2 0 2 2 C0

For any v e M, w =Tv e CC 0 00] and w - Tv > 0 except at E to Moreover

w'1L,%2 + R 10
2 N' -C N

so w e M. It is easy to see that TM is compact and T is continuous on M. Thus,

Schauder's fixed point theorem gives the existence of solutions to (3.14) and hence to

(3.7), (3.8), (3.9).

To prove the uniqueness of solutions, let v1 ,v2 be two solutions of (3.7), (3.8),

(3.9). It suffices to prove that v =v 1 -v 2 - 0 in a neighborhood of &fcj say

E 0  0 + 6with 6 > 0 small.

-14-



From (3.14) we have

v(&) R S CC - 2-)(v ) -
2 f 2

f - (C - 2T) - V (T)v(I)dT
0

where ;(T) is a certain point between vI(T) and v2 (T) and hence from (3.151

V(T) >-2 (T - C0 )

Thus

--.1

3v(E)I 4 i 1 1 (2- ) (r - t)m Iv(r)Idr
C0

1
--- I i

'- ( I o
m m  max Iv(0) for C., 4 g o + 6

It is impossible for 6 small enough, unless v S 0 on C0 ( E E D0 + 6.

Finally, we prove the continuous dependence of solutions upon C0 < 0, and a < 0.

Denote by v(EC0,rca) the solution of (3.7), (3.8), (3.9). Let ED ( 0, a < 0 be fixed.

What we want to prove is that for any C1 > &0  and C > 0, there exists a constant

6 > 0 such that

Iv(E1EC",) - v(EC 0,a)I < C, Ivl(ClC01,0) - V'(EoCKFic)I C

whenever 1% - t0, 
< 6, IA' - o 6 and max(&,C0) E C El C.

(n) (n), (n) scSuppose it is not the case. Then there exists ED > 0 and (n a En c

that (f0n) . a0" (n) . a (n * *), 0n)) ( and

(n) (n) ( )  v( (n) a0)I ) c or Iv'(C (n) i n) , (n)
)  -v (F(n) E ,0) 

)  P •
Iv(C ),FOn an) - vIC 1 , 0,c) 0 a r t'C ic a 'F

Suppose, for example, the case is the former:

(4.1) Iv[(n) In),aIn)) Q v(F i()a)
l  C "

-15-



We have

(n),(n)

(n) (n) 0 1 - .(n), l (n) 1 ( (n)
S n 2 2 ( + 2 ) v(''0 a )dT

(4.2) (n) (n) 1

2(ElF.nn )) (E _ (,M) + - (n), (n)00 2 2 f n ) 2 , ),m (, ,, O '0 "9 M

0

From (3.20), (3.16), (3.23) we see that v(;E, W) and vt(E; ,c') are bounded

uniformly in (W,a') in a small neighborhood of (&0,a) and hence from (4.2), it is

I((n) (n)easy to see that (v(Et;E 0  ,U i')) and (v'(Egi 0  ,a a 1 are equicontinuous. Thus
00

(vlI(n0 an) and {v'(1nF a ,),a have subsequences converging uniformly.
n) (n)(n) (n).

Suppose they are {v(EA n) (n)) and {v'( )0 ,a na themselves and00.(n) _(n) =' ( n)O ( n

(4.3) lim v(EIE 0  ,a ) w(E), lim V(E ,( n)) w() •
n+"m n O

From (4.2). (4.3) we get

0g 1 mw(; + I / w m(Tlad
w(E) -2 0 1 E) f0

0 10m
R2 - E ) .1 ( 1 - 2r)w'(T)dtw(E) = -2 1  0 2 GO f

whence w(C) is a solution of (3.7)-(3.9) and w(E) - w'(). By uniqueness,

w(G) - v(&lGO~a).

On the other hand, we may suppose that (&(n), converges:

lim E(n) ,

n 4w

Letting n * - in (4.1), from the uniform convergence we get

Iw(F) - V(iGo,a)l ) C .

The contradiction means that what we want to prove is true. The proof of Proposition 2 is

complete.

-16-



Remark. So far we have proved that for any t0 < 0 and a < 0, there exists a

function v C IIt 0.-) ( C2 ( ,) with v(s) > 0 for > F.0  satisfying (3.7), (3.8),

(3.9). Since v(O) is hounded and increasina , iA v(l ) exists and is positive, Let

M . lia v(E)

I

1,1
Then it is clear that ''-2 ed 

t  satisfy 12.1)-12.5) and hence, by Proposition

1, 1

U for x > t

W . 1

a for x < 0
t 2

is a generalized solution of the Initial value problem

au a 
2 A(u)

3t x2 '

u =l 1i0 for x > 0

{ a for x < 0

where A(u) - max(lul"'luo). The fact that this generalized solution w has a line of

1

discontinuity x 0t
2  

shows, in particular, that 1.6) is incorrect.

-17-
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15. Existence and Uniqueness for the Free Boundary Problem

Now we return to the free boundary problem (3.7)-(3.10) and state our main results in

the following:

Theorem. The free boundary problem (3.7)-(3.10) has a unique solution (v( ),t0 )

with E0 
< 
0 and v(E) e CIC&0 ,

) ( C
2

(C 0 ,'). Moreover, if we denote (v&),&0 ) by

(v(E1(,S),&O (a,$)) to express explicitly the dependence on a and 0, then v( ic,O)

and -E.(a,$) are strictly decreasing in a and strictly increasing in 0.

Proof. Denote by v(E;E0 ) the solution of (3.7)-(3.9) for the moment. For any

(O 
< 0, the limit

lim V( ;EO ) - 1&0)

exists. Let

E = {Eo < 01 y(E ) < Sm )

From (3.20), (3.21), it is clear that E is nonempty. Let

0= inf E

We want to prove

(5.1) lim v(ICiC) - y(r0) = .

EW 0 0

Suppose Y(0 ) Sm . Denote

(5.2) a IY(r 0 ) - eml

From (3.21), (3.23), it is clear that we can choose positive constants cI and c2  such

that

(5.3) 0 < v'(&;( 0 ) ( c Iexp(-c 2 &
2 ) for ) 0

3& &
for 0 - 2 [ 

2
, 1. Choose E such that

(5.4) c 1  exp(-c 2 2 )d& <
'21
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B y the continuous dependence of solutions of (3.7)-(3.9) upon E01 there exists

n e (o,r 1/2) such that
0

(5.5) Iv( Iit) - v(1o IF 6

whenever & e [ - nXo + n].

Now for C. e (Z0 - n, 0 + n], integrating (5.3) over (t1,.) and using (5.4) we

get
6

S< (0 - V(&lI; o ) <

in particular,

o ( o) - v( , o < 6

Hence
t (o)_ ( )I < IV(&l~o ;E v(K )

and by (5.5)
<(5.6) IY(Uo 0 0('~ 2.

If Y(r0) 
= 

m . 6, then (5.2) and (5.6) imply

y(E 0) < 0-

for E0 e ff. n'r0 + n
]
. This means that 0 M0 + n) C E, which contradicts the

definition of C0"

If Y(z0) - Om + 6, then (5.2) and (5.6) imply

( ) 
> Om +5

Y&0

for &0 e -r - n' 0 + n
]
. This means that no point on CE0 - nAO + nI is in E, which

also contradicts the definition of Co.

Therefore (5.1) holds and the existence is proved.

Now we prove the uniqueness. Suppose (3.7)-(3.10) has two solutions (v,(E), 0, 1

and (v2 (E),C 0,2) and E', * C0,2" (If E " C 0 02  then, by Proposition 2,

V V 2( Then from the relation

F -

(5.7) v'(E) = v'(n 0 )exp(- T j rv (T)dT)

no

-19-



which holds for any solution v(&) of (3.7), it is easily seen that the curves

v - v I(E) and v - v2 (&) cannot intersect at any point (n 0,v0 ) with no 0. in fact,

if

1In 0 v2 (n 0  =v 0

then we must have

otherwise the standard uniqueness theorem would imply that v 1(E) S v 2(&~). suppose

v;(n0) > V(a

Then we have, in a right neighborhood of no0,

(5.8) v1 (&) > 2

Note that (5.7) implies

(5.9) V;(&) > E

whenever (5.8) holds. Thus (5.9) would be true for all > n and hence

which is impossible.

In addition, a similar argument shows that if, for example,

(5.10) v1(o) > v2 (o)

then

Let U(v) be the inverse function of v(&), v(E) being a solution of (3.7)-(3.10)

which is positive except at E.=. Then from (3.7)-(3.9), we obtain

1--1

(5.12) V, EEm ,

(5.13) &vo t

(5.4) 'lV-0 c

-20-



Zf we denote the inverse functions of v I(E) and v 2C(E) by & I(v) and E 2Cv), then

from (5.10) we can assert that

(5.15) F' <F0,

otherwise there exists. o 0 < v 0 < v2 (0) such that

C ICV) > 2 (v) for 0 C v < v., I (v 0 E F2 (v0

and hence, noticing that

ECCO) - 2 > 2
GC0 1  C0 ,2

we may conclude that E~v) -C ICv) - C (v) achieves its maximu at a certain point in

(0,vo) where

> 0, C' 0, E" r 0

On the other hand, from (5.12)

1 2 2m '1 2

1 111 -

I m I + vm F F1 > 0,
g v2 - '2'

since V1 > 0, C,0, C'-0. The contradiction proves (5.15).

By the way, what we have just proved in that the curves v - v (E) and v =v 2C()

cannot intersect at a point in the halfplane & < 0.

Now we consider the function E~v) ft C v) - C 2 v) again on the interval [0,v2 (0fl.

We have

E CO 2(0)

and from (5.10), (5.11)

CC())> EC(V1 (0)) - > --- C'v()
Yv2(0vC0) v;(0) Y2()

-21-



Therefore the function U(v) 1(%v) - E 2 (v) on (O~v2 (O)I would achieve its minimum at

same point in (0,v2 (0)), which is impossible. This completes the proof of uniqueness.

The rest of the theorem can be proved by a similar argumient.
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